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Abstract. A Uleoretical investigation is made of staric and dynamic effects when a nematic 
liquid clystal is subjected to crossed electric and magnetic fields. In the static problem a 
twist-wall solution is discussed for a semi-infinite sample of nematic; a wntml parameter, q, 
describes the relationship between the fields and their crossed angle and is used to characterize 
the solution. For an infinlte sample of nematic th is  parameter also t m s  out to characterize 
the rypes of solution (travelling waves) which are available for the nonlinear dynamic equation 
when celtain approximations are made. The type of solution which occurs is shown to depend 
crucially on the boundary conditions, the Kelative magnitudes of the electric and magnetic fields 
and their crossed angle. 

1. Introduction 

Liquid crystals usually consist of elongated molecules where the long molecular axes locally 
adopt one common direction in space. This direction is described by the unit vector n, 
commonly called the director. The orientation of the director in liquid crystals can be 
driven by either an electric field E or magnetic field H or a crossed combination of both. 
Motivated by de Gennes [l] and the review article by Lam [Z], we study a layer of nematic 
liquid crystal in the xy-plane which is assumed to have a twist wall in the z-direction 
when the crossed fields are in the xy-plane. We investigate two related problems. The first 
problem examines static solutions in a semi-infinite sample where the layer is assumed to 
have the director strongly anchored parallel to the x-axis (that is, on the lower surface plate 
at z = 0 in the direction of H )  and bounded above by a free surface, considered here to be 
at z = fw. The second problem looks at timedependent solutions in an infinite sample. 
It tnrns out that the critical parameters derived in the static problem are also useful when 
looking for travelling-wave solutions in the time-dependent problem. 

Specifically, we set 

n =~(cosq5(z.t),sin~(z.t),O) (1.1) 

E =  E(cosp,sinp,O) (1.2) 

H = H(1,O. 0) (1.3) 

where q5 is the angle n makes with the x-axis and introduce the E and H fields as 

where E and H are the magnitudes of the fields and fi  'is the angle between them with 
0 < p < zp.  
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5644 I W Stewart and T R Faulkner 

For the ansatz given in (1.1) the bulk energy is [3] 

( 1.4) 

(1.5) 

w = ?KZ(7%.V 1 x n ) Z  

$ = -;xn(n. H)' - ! ~ E , , E o ( ~ z .  E)' 

where KZ > 0 is the twist elastic constant. The corresponding combined electric and 
magnetic energy is 

where orientation-independent terms have been excluded. The diamagnetic anisotropy xa 
and the dielectric anisotropy E. are assumed to be positive; €0 is the permittivity of free 
space. In the absence of bulk flow the relevant dynamic equations for the director motion 
in the usual Cartesian component form for i = 1,2, 3 are 

where yl is the twist viscosity coefficient and y is a scalar Lagarange multiplier [4, p 2381 
(note that our form for $ is opposite in sign to that used in [4]). We can eliminate the 
scalar y by multiplying (1.6)l by sin@ and (l.6)z by cos@ and subeacting the resulting 
equations to yield the dynamic equation 

y ~ @ ~  = K& - $xaH2sin(Zq4) - ;e,coEZsin2(@ - 8). (1.7) 
This equation is of the form mentioned by Lam [2, p 321 when H = 0. Faetti et a1 [5] have 
also examined (1.7) when the elastic term is absent and the crossed fields are switched on 
and off alternately. In this article we intend to include both fields and the elastic term. 

There are no known exact solutions to the nonlinear equation (1.7). Nevertheless, the 
qualitative nature of the solutions can be obtained by making some approximations. In 
section 2 we briefly discuss the full nonlinear static twist solution to (1.7) in the semi- 
infinite sample with the boundary condition @ = 0 at z = 0. In section 3 we approximate 
the right-hand side of (1.7) up to cubic order in @ to search for time-dependent soliton- 
like travelling-wave solutions for @ close to n/Z, making use of the critical parameters 
introduced in the static problem. Through these approaches we can establish some insight 
into the behaviour of solutions to (1.7) and perceive the possible influences of E,  H and 
p on the types of soliton-like orientation of n. 

2. Static solutions 

For the static case, equation (1.7) can be written as 

$2@zz = $ sin(24 - q)  

& = &(e,'6;E4+ x , Z H ~ + ~ E ~ E O X = E ~ H ~ C O S ( ~ B ) ) - " ~  (2.2) 

(2.1) 
where 

It will be seen that the parameter q controls the type of solutions we find; this is to 
be expected since q gives the key information on the relationship between the control 
parameters E ,  H and p. It is of course possible to consider equation (1.5) as a single-field 
term, but this would only include a special case of a particular fixed angle between the 
fields and then equation (1.7) ( r e ~ t t e n  as equation (2.1)) would appear in a simpler form. 
The principal reason for using two separate yet combined fields rather than one single field 
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is that experimentally the electric and magnetic fields have a measurable physical angle 
between them, as discussed and pictured in [5] where the altemate presence of these fields 
is considered. This means that the above description of such problems is more general 
since the influence of either field can be assessed via the single control parameter q in 
equation (2.3). A single field would initially permit a simpler description, but the resulting 
analysis from section 3 onwtuds would essentially remain unchanged, while the interplay 
of the competing fields would remain hidden. The above approach simplifies the combined 
crossed-field problem and permits a fuller discussion on the effects of the relative magnitudes 
of the fields upon the types of available solutions. 

Equation (2.1) is a version of the static sineGordon equation which has the exact twist 
solution 

4 ( z )  =q/2-n  +~m-'(exp[-(z -zO)/ t l ) .  (2.4) 

Imposing the boundary condition 4 0 at z = 0 forces the centre of the twist to be at 

zo = 5 ln[tan(n/Z - q/4)1. (2.5) 

Clearly zo increases as q decreases to zero and 4 decreases from zero to q/2 - x (that is, 
the director twists through a total angle of n - q / 2 ) .  From~(2.3) the physical interpretation 
is that the twist will unwind towards the free surface as either the magnitude of the E field 
is decreased (while H > 0 is fixed) or, in general, the angle ,9 between the fields tends to 
zero. There are two cases to consider in detail: 

Case (i) x. H 2  > G & E ~ .  Here, from (2.3), we must have 0 < q c n/2 with the maximum 
value of q occurring at the critical angle ,91 given by 

,9, = - 2 1 cos-1 (-$) 
leading to 

Therefore as ,5 decreases from to zero or increases from ,91 to n/Z the centre of twist zo 
increases smoothly to infinity since q tends to zero. The minimum value of zo is at ,9 = ,91 
and is given by equation (2.5) when q = qmax. 

Case lii) x u H 2  < e&E2. In this case, from (2.3), there is a critical angle 8 2  given by 

where q = n/2. It is clear that q is positive for 0 6 p < ,92 and therefore equation (2.5) 
gives positive values for 20. For ,9 > f l z  equation (2.3) shows q to be negative which then 
forces (2.5) to have no solutions for zo. Therefore, provided ,9 < ,9z the centre of twist will 
increase to infin'ity as ,9 decreases to zero. The minimum value for zo will be at ,9 = 82 
where 

(2.9) zo = 5 In [tan(3n/8)] . 
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3. Travelling-wave solutions 

Employing the. notation of section 2, equation (1.7) can be written as 

I W Stewart and T R Faulkner 

~4~ = t24zir - sin04 - 4) (3.1) 

7 = YI(G:G~E~+ x;H4 + ~ E , € ~ X . E ~ H ’ C O S ( ~ ~ ) ) - ~ ~ .  (3.2) 

where 

We now seek solutions for 4 close to x / 2  and set 

2 
,. 

(3.3) 

which effectively changes the first negative sign in (3.1) to a plus sign. Equation (3.1) can 
then be approximated by Taylor expanding the sine term up to cubic order in 6, making no 
restrictions on the control parameter q. This results in 

Jc 
@ = @ - -  

VW = t’6zz - $(cosq)F(& 4) 

~(6, q )  = J3 - $(tanq)JZ - $6 + $ tanq. 

(3.4) 

(3.5) 

where 

Rescaling with 
2 cos q 

311 
T = t -  

(3.8) 
Of course, these transformations will only be valid for q # =!=~r/2 which, by equation (2.3), 
is always hue if xaH2 z c.c0E2 or xaH’ # -ea~~~’c0s(2f l ) ;  when 4 = f r / 2  the right- 
hand side of equation (3.4) becomes a quadratic in 4. We shall first concentrate on the case 
when 1q I c a / 2  and discuss the quadratic case later below. 

3.1. The cubic approximation 

As discussed by Lam [2, p 201, finding the roots in 6 of F may allow us to construct exact 
travelling-wave solutions for the solution 6 of (3.8) whenever the roots are real. It is simple 
to check that the cubic discriminant for F is [6, p 171 

(3.9) 1 3 2  A F  = -‘d - E tan 4 - I tan4 q 32 

which is clearly smictly negative for all 141 < 1rj2 and hence F ( 6 . q )  has exactly three 
distinct real roots. Using the method of Cardano and Lagrange [7] these roots are found to 
be 

4’ = (tan’q + ~ ) I ~ C O S ( B ~ )  + 4 tanq 

4 2  = (tan’ q + 2)’p cos(eo + 4 n p )  + f tan4 

43  = (tan’q + 2)’12 cos@o + 2?r/3) + tanq 

(3.10) 

(3.11) 

(3.12) 



Director orientation in nematics 5647 

where 
1 ( (6tan4q + 12tan’q + 8)‘/’ e, = - tan-’ 
3 tan3 4 

(3.13) 

In all possible cases, -a12 c q c n / 2  and hence -z/6 < 00 c 0 or 0 c 00 < n/6 
with eo = -n/6 when q approaches zero from the left and 00 = n/6 when q approaches 
zero from the right (eo = 0 only when q = b / 2 ) .  Straightforward consideration of the 
cosine function leads to the following inequalities with their corresponding conditions on 
the control parameter q: 

$1 > o  (141 < n/2) (3.14) 

4 < h < $1 (3.15) 

4 < 4 < C I  (-?If2 c q < 0-) (3.16) 

h,@3 ==91 (4 = 0). (3.17) 

We shall restrict our attention to the case in (3.15) when 0 < q < n/2,  the case for negative 
q being analogous with the r6les of & and 4s interchanged (it will be shown below that 4 
converges to the same solution as q tends to O+ or 0-). 

(O+ < 4 < n/2) 

To find travelling-wave solutions we introduce the variable T defined by 

r = Z - c T  +ZO (3.18) 

where Z, is an arbitrary constant and c is a constant to be determined. Equation (3.8) then 
becomes 

JZz + c& = F ( 6 - q ) .  (3.19) 

We are particularly interested in solutions where c > 0. There are three types of solution to 
consider, similar to those defined by Lam. The type of solution which is physically relevant 
is the one which is stable to small perturbations and whose boundary conditions at z = &m 
are closest to the boundary conditions being modelled in a given particular problem. These 
soliton-like solutions discussed here require third order expansions in Q for the different 
solution types A, B and C. These are characterized by the single control parameter q and the 
cubic roots of F ,  given by (3.10)<3.12). Although similar travelling waves are discussed 
by Lam, here the solutions are interesting in that they are directly seen to be related to 
changes in the angle p via the control parameter q .  Despite exhibiting different forms of 
travelling waves, the physically prevalent solutions are not identified in this present paper; 
a discusion of~the stability of solutions is beyond the scope of this present work where the 
techniques and consequences of finding solutions will be of wider interest. Work in p r o p s  
[IO] addresses this problem and shows that in special cases of combined fields only one 
of the three main types of solution (exactly which one depends upon the choice of various 
physical parameters) is generally stable to small perturbations, this solution being identified 
with the physical solution. 

3.1.1. Type A travelling waves. We first note that 4, is always greater than h or 4. For 
q > 0 type A solutions occur when 4 travels from 4, to 42 as 5 -+ CO. The solution to 
(3.19) with this behaviour is 

(3.20) 
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where, by (3.15), we have 

I W Stewart and T R Fa-ulkner 

I 
c = -($I + h - 243) > 0. (3.21) 

Direct substitution of (3.20) into (3.19) verifies this to be the solution. This solution can be 
expressed in the original variables via (3.3), (3.6), (3.7). (3.18) as 

(3.22) 

Jz 

$ = ($1 - $2) 11 + exp [a(z --ut + zO)]}-' + $2 + n/2 
where zo is an arbitrary constant and 

1 cosq 112 

t 3  
a = ($1 -$d- (-) (3.23) 

(3.24) 

This solution is valid when $ is close to x/2. 

of the inverse of the coefficient of z and therefore 
Following the definition in [2, p 421, the wave width WA of such solutions is the modulus 

wA(q) = &$($I - &2)-1(cosq)-1/2 

= t(tan2 q + 2)-1'2(cos q)-'12[sin(e~ + 2x/3)1-'. (3.25) 
WA(q) shows that large-amplitude travelling-wave solutions are narrower and travel faster 
than the small-amplitude solutions. This definition of wave width is similar to considering 
the distance (in t) over which the solution (3.22) changes by $l$(+co) - $(-w)[ across 
the 'centre' of the wave at t = 0. This distance is easily computed as 21n(3)WA(q), which 
is clearly proportional to wA(q). Similar widths have been discussed by Helfrich [8] for 
nematics and Stewart and Raj [9] in the case of smectics. 

Solutions for negative q are as in equations (3.20) to (3.25) except that the roles of $2 
and 4 are interchanged and %/3 is replaced by n/3 in equation (3.25). From (3.16) it is 
also true in this case that c z 0. 

As q tends to O+ we see that 

$ l + J r 7 Z ~ .  & + o  4,j-m (3.26) 

$l+m 4z--m 4 + 0 .  (3.27) 
and as q tends to 0- 

It is then seen that c + 3&/2 as q + 0 and therefore the solution q5 converges to 

(z1 an arbitrary constant) as q + 0 with WA(O) = .&x, this being the maximum wave 
width. 

3.1.2. Type B travelling waves. For q > 0 type B travelling waves occur when 4 travels 
from 4 to h as 5 + CO. The solution to (3.19) is then 

])-'+h (3.29) 

where, by (3.15), (h - $3) > 0 and 
1 

45 
c = --(h +$3 - 241) > 0. (3.30) 
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As above, the solution can be expressed in the original variables as 

@ = (+z - 4) (1 + exp [-a(z - ut +t0)11-' + 4 + I I / Z  (3.31) 

with zo an arbitrary constant and 

(3.32) 

(3.33) 

The wave width in this case is 

W,(q) = A$(& -~@3)-'(cosq)--I/2 

= ((tan'q + 2)-1~2(cosq)-'/2[sin(~o)~-'. (3.34) 

For q < 0 we interchange 4 2  and 4 in all of the above and replace 8, by -0, in 

By (3.26) and (3.27), c + 3 m  as q + 0 and the solution q4 converges to 
equation (3.34). 

(3.35) 

where z1 is an arbitrary constant. Here, WB(O) = &e, this being the minimum wave width, 
by equation (3.34) (the wavewidth grows to infinity as q + frr/2, that is, as 00 + 0). 

3.1.3. Type C travelling wuves. Type C travelling waves occur when 6 travels from q51 to 
q53 as t + CO for q > 0. The solution to (3.19) is then 

(3.36) 

where, by (3.15), (41 - 4 )  > 0 and 

(3.37) 

This gives the solution in the original variables as 

4 = (@-I -  43) 11 + exp[u(z - ut + z0)1}-' + & + n/2 (3.38) 

with zo an arbitrary constant and 

(3.39) 

6 cosq 1/2 

t l 3  
U = (41 + 4  -2h)-.(-) . (3.40) 

The wave width is 

Wc(q) = &$(& - 4)-'(cosq)-'/2 

= c(tan2q + 2)-1/2(cosq)-1/z[sin(Ba + rr/3)]-'. (3.41) 

If q < 0 then we replace 4 by $2 in equations (3.36) to (3.41) and replace n/3 by 
2z/3 in equation (3.41). 
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As q 4 0 the wave speed c + 0, by (3.26) and (3.27). The travelling wave becomes 

4 = { I  + e x p [ ~ z / i + z I ) ~ F l  -m-i-n/~. (3.42) 

z1 an arbitrary constant, whose width equals the maximum wave width Wc(0) = f /&, 
This is in contrast to type A and B travelling waves which never become static for any 

a static domain wall, namely, 

141 < z/2. 

3.2. The quadratic approximation 

As was mentioned above, when q = i n j2  (that is, when x.H2 approaches 
-e,~oE~cos(2,6)) the right-hand side of equation (3.4) becomes (to cubic order) a quadratic 
in 4. When q = n/2 equation (3.4) is 

(3.43) OJt = 52$zz + $2 - 4 
which has the exact travelling-wave solution 

4 = I / J Z  - .JZ [ 1 + exp [" (z - - 5 ~ 2 1 " t + z 0 ) ] ) - 2 .  (3.44) 
4% 4-6v 

This leads to an approximate solution (near n/2) of (3.1) 

4 = 1 / f i +  n / 2  - A 11 + exp [ 2"" (z - - 5tz1l4t  + zo)])-2 (3.45) 
A5 4-60 

where the wave width is W = <2-'14&. When q = -n/Z equation (3.4) is 

0$r = $% - J2 + 4 (3.46) 

which ultimately yields the corresponding approximate solution for 4 as 

6 = - I / ~ + n / z c ~ (  1 +exp [e ( z  - - 5c21'4t + ..)]y (3.47) 
&f 4-60 

which has the same wave width as (3.45). This shows that as the angle f i  approaches ,6; 
from below (defined at equation (2.8)), q > 0 and the solution for 4 sufficiently close to 
n/Z is therefore given by (3.45); this solution travels (in the variable 5 )  from n/2 - l/& 
to n/2+ I/&. On the other hand, when ,6 approaches ,6: from above the solution travels 
from n/2 + l/& to a/'?. - l/&; this follows from solution(3.47) when q is negative. 
One interpretation of this is that when xaHZ 6 cacaEZ then p2 is the critical angle where, 
as the angle @ increases across A, the solution for 4 close to n / 2  flips from an anti-kink to 
a kink solution, This type of behaviour is not possible if xaH2 > eaeaEZ where q # f n / 2  
and the earlier cubic approximations hold. 

It should also be noted that if we approximate 4 to quadratic order close to zero (rather 
than close to n/2) then, for q > 0, equation (3.1) can be written as 

~ $ 1  = &zz - (4 - A ) ( @  - @z)sinq (3.48) 
where 

4, = -4 cotq + $JG (3.49) 

(3.50) @ 2 = - ~ c o t q - ~ J c o t z q + 2 .  1 
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The resulting solution is easily verified as being 

@ = (@I - @z) 11 + exp[a(z - ut + ZO)I)-~ + 6z (3.51) 

where zo is arbitrary and 

(3.52) 

(3.53) 

The wall width in this case is simply W ( q )  = t&l + ~ i n ~ q ) - ' / ~ ,  

4. Discussion 

We have shown that there are static twist-wall phenomena and travelling waves when a 
nematic liquid crystal is subjected to crossed electric and magnetic fields. Static solutions 
were derived for a semi-infinite sample and various travelling waves were shown to occur 
in an infinite sample for solutions approximating the nonlinear dynamic equation (3.1). 

In general, for xaHZ > ea60EZ, it was shown that the centre of twist in the static solution 
moves out towards infinity (that is, the twist in the sample effectively unwinds) as the angle 
b between the two fields approaches zero or n/Z the minimum value for the centre of 
twist occurs at the critical angle in equation (2.6) and is given by zo via equations (2.5) 
and (2.7). From an experimental point of view, the sample could have a fixed electric field 
applied across it and then be rotated in the presence of a magnetic field. The distance 
of the centre of twist from the bounding plate, 20, would be observed to be a minimum 
at the critical angle given in equation (2.6), thereby establishing relationships between 
the physical constants K2, xa and 6,60 by means of equations (2.2). (2.5). (2.6) and (2.7). 
Similarly, if xaH2 $ c,coE2 then the centre of twist moves out to infinity as p approaches 
zero. The minimum value for zo in this case occurs at the angle ,!?z given at equation (2.8) 
where zo is given by (2.9). The control parameter q defined in equation (2.3) conveniently 
describes the link between the strengths of the two fields and the angle between them. A 
comparison of the relative magnitudes of electric and magnetic fields used for observing 
the reorientation of the director has been made experimentally and discussed by Carr [Ill. 

In the infinite sample three general types of travelling waves were found when equation 
(3.1) was approximated to cubic order in @ near @ = n/2. These solutions are completely 
characterized by the parameter q when 191 < n/2. One of these travelling waves, 
type C, was shown to reduce to a static solution as q + 0. For the special case where 
q = f n / 2  it was shown that the cubic approximation to (3.1) became a quadratic and that 
if x.H2 < c,e;EZ then the solution could switch from an anti-kink to a kink solution as 
the angle between the fields crossed the critical angle &. In making the approximations 
introduced in section 3 care should be taken in the physical relevance of the q parameter 
since the magnitude of q controls the magnitude of the roots 41, 62, 43 and hence the 
amplitudes of the derived travelling waves. Matching these roots to approximate the physical 
boundary conditions should be of benefit when modelling an experimental set-up. When @ 
is close to zero the solution (3.51) was found for the quadratic approximation to (3.1). For 
@ near zero the cubic approximations do not lead to solutions similar to those for 4 close 
to n/2 the change in sign of the coefficient of 43 invalidates the methods employed above 
in the construction of travelling-wave solutions. 
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In deriving the dynamic equation (1.7) the general effects of bulk flow have been ignored, 
this being the usual procedure when the dynamics of the director R. are first investigated. 
The inclusion of Ruid Row is a natural next step in the crossed fields problem. In this 
respect it should be mentioned that C m  and McCIymer [I21 have experimentally observed 
transverse fluid Row in a nematic liquid crystal subjected to crossed electric and magnetic 
fields; the removal of the electric field was seen to produce defects in the nematic alignment. 
The theoretical modelling of these defects would be of great interest. 
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